DYNAMICS OF SOLAR MACROSPICULES FROM HIGH-CADENCE EUV OBSERVATIONS

Ivan P. Loboda, Sergey A. Bogachev

Lebedev Institute of the Russian Academy of Sciences

Macrospicules

Lifetime ~ 10 min

Width

TESIS high-cadence time series

October 2, 2009	17 min	/	299 shots	=	3,5 s
November 23, 2009	49 min	/	489 shots	=	6,0 s

Data processing

Extracting data from shots

36 macrospicules found, but not all are suitable

Axis inclinations

Data processing

Filtering and subtracting background

Data interpretation

Optically thick medium:

$$\left. \begin{array}{l} I \sim L_{crit} N_{He} N_{e} \sim L_{crit} N_{e}^{2} \\ L_{crit} = 1/\alpha \sim 1/N_{e} \end{array} \right\} \Rightarrow I \sim N_{e} \sim \rho$$

Velocity field calculation

$$\frac{\partial}{\partial t}\rho + \frac{\partial}{\partial z}\left(\rho v\right) = 0$$

That yields:
$$v'_z = f(v, z) = Pv + Q$$

Where
$$P = -\frac{1}{\rho} \frac{\partial \rho}{\partial z}$$
 and $Q = -\frac{1}{\rho} \frac{\partial \rho}{\partial t}$

Boundary conditions:
$$v(z_{max}) = 0$$

Velocity field calculation

Normalized partial derivatives P and Q

Macrospicule's velocities

Velocity field and parabolic fit

Macrospicule's velocities

Macrospicule's velocities

Decelerations and velocities

Mass loss estimation

Continuity equation with loss: $\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) = \sigma$

Where v is taken from parabolic fit

Loss rate is calculated as:
$$L = \frac{\int \int \sigma \, dt \, dh}{\max_t \left(\int \rho \, dh \right)}$$

 $10 \div 40$ % of visible mas is lost at heights ≥ 15 Mm

Mass loss at different heights

THANK YOU FOR YOUR ATTENTION