Solar and stellar flares: Observations, modeling and synergies

P. Heinzel

Astronomical Institute Academy of Sciences of the Czech Republic

Hα loops (Wroclaw observatory)

H-alpha 6563 A

Observatory Upice

UT 9:53:29 CaII-K 3934 A

Observatory Upice

UT 9:52:17

White-light X-flare (Coimbra) August 9, 2011

Semi-empirical models of Machado et al. (1980)

Radziszewski et. (2007, 2011)

Set of 1D plane-parallel equations of RHD

The plane-parallel equations of radiation hydrodynamics are the equations of mass conservation,

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho v}{\partial z} = 0 ,$$

momentum conservation,

$$\frac{\partial \rho v}{\partial t} + \frac{\partial \rho v^2}{\partial z} + \frac{\partial}{\partial z} \left(p + q_v \right) + \rho g = 0 , \qquad (2)$$

and internal energy conservation,

$$\frac{\partial \rho e}{\partial t} + \frac{\partial \rho v e}{\partial z} + (p + q_v) \frac{\partial v}{\partial z} + \frac{\partial}{\partial z} (F_c + F_r) - Q = 0, \quad (3) \qquad \text{beam heating}$$

along with the level population equation

$$\frac{\partial n_i}{\partial t} + \frac{\partial n_i v}{\partial z} - \left(\sum_{j \neq i}^{N'} n_j P_{ji} - n_i \sum_{j \neq i}^{N'} P_{ij}\right) = 0 , \qquad (4)$$

non-thermal coll. rates

and the equation of radiative transfer

$$\mu \, \frac{\partial I_{\nu\mu}}{\partial z} = \eta_{\nu\mu} - \chi_{\nu\mu} \, I_{\nu\mu} \, . \tag{5}$$

- RHD codes:
- RADYN (Oslo, UW)
- (1) HYBRID (Ondrejov)

Simulations with the HYBRID code

Varady et al. (2010)

EVE flare spectrum in SDO/AIA channels

SDO/EVE: total solar irradiance (Sun-as-a-star)

15 Feb 2011 X-class flare (difference spectrum)

dMe flare stars

Name	Spectral type	Position (ep=J2000)	Fluxes (mag)
EV Lac	M4.5Ve	Ra = 22 46 49.7317 Dec = +44 20 02.3569	U = 13,000 B = 11,450 V = 10,090
YZ CMi	M4.5Ve	Ra = 07 44 40.17401 Dec = +03 33 08.8350	U = 13,761 B = 12,831 V = 11,225
AD Leo	M4.5Ve	Ra = 10 19 36.277 Dec = +19 52 12.06	U = 12,000 B = 10,970 V = 9,430
V711 Tau		Ra = 03 36 47,3 Dec = +00 35 15,9	B = 6,800 V = 5,905
V773 Tau (HD 283447)		Ra = 04 14 12.92168 Dec = +28 12 12.2960	U = 13,160 B = 11,800 V = 10,700

A. Kowalski (2012) - PhD thesis

APO – 3.5m telescope

AD Leo

Kowalski (2012)

'Hot-spot' model of the WL continuum (Kowalski 2012)

AD Leo

YZ CMi

Ondřejov Observatory 2-m Telescope

- The 2-meter telescope is in operation since 1967.
- Two cameras:
 400 mm (low dispersion)
 700 mm (medium dispersion)
- Spectral region 4000Å 7000Å
- Telescope parameters:

Diameter:	2m
Primary:	9m
Cassegrain:	29.16m
coudé:	63.5m
Equatorial	
	Diameter: Primary: Cassegrain: coudé: Equatorial

Quiescent spectra of V1054 Oph Ondrejov 2m telescope

NASA Kepler Mission

Kepler discovery of super flares on solar-type stars

Light curves for different lines

- Call K peaks tens of minutes behind other lines and continua
- This was not observed on the Sun
- Can be effect of a mixture of ribbons and loops
- 1D RHD simulations provide only vertical view of the ribbons, not any side view of the bright loops
- dMe stars are cool (T_{eff} much lower than solar), but exhibit quiescent emission in some lines like hydrogen H α and Call

Further systematic observations of flares on M-dwarf and solartype stars are required, followed by fully 3D simulations of the flare evolution.

But even 1D simulations were not yet quantitatively compared to current high-resolution and high-cadence spectral observations of solar and stellar flares !